Estos ejemplos cubrirán formas bilineales y cuadráticas, matrices de representación, y algunas operaciones básicas con estas estructuras en el contexto del álgebra lineal.
Ejemplo 1: Representación Matricial de una Forma Bilineal
Primero, definiremos una función que dada una base y una matriz representativa de una forma bilineal, calcule (f(u, v)) para dos vectores dados en esa base.
import numpy as np
def forma_bilineal(u, v, A):
"""
Calcula el valor de la forma bilineal f(u, v) = u^T * A * v
donde A es la matriz de representación de la forma bilineal.
"""
return np.dot(np.dot(u.T, A), v)
# Matriz de representación de la forma bilineal
A = np.array([[2, 1], [1, 3]])
# Vectores u y v en la base estándar
u = np.array([[1], [2]])
v = np.array([[2], [1]])
# Calculamos f(u, v)
resultado = forma_bilineal(u, v, A)
print(f"El resultado de f(u, v) es: {resultado}")
Ejemplo 2: Forma Cuadrática y su Matriz Asociada
Ahora, vamos a definir una forma cuadrática y calcular su valor para un vector dado, utilizando su forma polar asociada como matriz representativa.
def forma_cuadratica(v, A):
"""
Calcula el valor de la forma cuadrática Φ(v) = v^T * A * v
donde A es la matriz de la forma polar asociada a la forma cuadrática.
"""
return np.dot(np.dot(v.T, A), v)
# Matriz de la forma polar asociada a la forma cuadrática
A = np.array([[4, 2], [2, 5]])
# Vector v
v = np.array([[1], [2]])
# Calculamos Φ(v)
resultado = forma_cuadratica(v, A)
print(f"El valor de la forma cuadrática para v es: {resultado[0][0]}")
Ejemplo 3: Diagonalización por Congruencia
Este ejemplo es un poco más complejo y requiere de un proceso iterativo que no se detalla completamente en los apuntes proporcionados. Sin embargo, podemos esbozar cómo se verificaría si una matriz es diagonal mediante la verificación de vectores conjugados.
def es_diagonal(A):
"""
Verifica si la matriz A es diagonal verificando si todos los elementos
fuera de la diagonal principal son cero.
"""
n = A.shape[0]
for i in range(n):
for j in range(i+1, n):
if A[i, j] != 0 or A[j, i] != 0:
return False
return True
# Matriz simétrica A
A = np.array([[4, 0], [0, 5]])
# Verificar si A es diagonal
if es_diagonal(A):
print("La matriz es diagonal.")
else:
print("La matriz no es diagonal.")
Estos ejemplos cubren la creación y manipulación de formas bilineales y cuadráticas, así como la verificación de propiedades matriciales básicas. Para aplicaciones más avanzadas, como la diagonalización por congruencia o la determinación de la signatura, se requiere un conocimiento más profundo de las operaciones matriciales y los métodos numéricos, que pueden ir más allá de un simple script de Python y requerir el uso de bibliotecas específicas de álgebra lineal.

¿QUÉ TE HA PARECIDO EL ARTÍCULO? Danos tu opinión al final de la página.
Deja tu comentario y ayúdanos a crecer.
¡SÍGUENOS EN TUS REDES FAVORITAS!
AYUDANOS A CRECER Y QUE LLEGUEMOS A TODAS LAS PERSONAS QUE NOS NECESITANA. SÍGUENOS EN TUS REDES.
Entra AQUÍ y elíge donde seguirnos.

NUESTRAS ÚLTIMAS PUBLICACIONES
- 🧪 Simulacro de Examen – Programación II VJ1208 (Simulacro 5 – Estilo PDF)
- 🧪 Simulacro de Examen – Programación II VJ1208 (Sin estructuras dinámicas)
- ¿Qué son los Stack, Push, Pop y Peek en C#?
- 🧪 Simulacro de Examen – Programación II VJ1208 (Versión Simplificada)
- 🧪 Simulacro de Examen – Programación II VJ1208 (Nivel Básico – 1 hora)
- 🧭 ¿Qué es la distancia Manhattan en C#? Ejemplo práctico
- Simulacro de Examen – Programación II (versión “larga”)
- Podcast Academia SanRoque – Historias de España – 001: Edad media en la península ibérica.
- El Arte de Inventar Idiomas: Entre la Genialidad y la Farsa
ELIGE TU RED FAVORITA Y SÍGUENOS.
AYUDANOS A CRECER Y A LLEGAR A TODAS LAS PERSONAS QUE NOS NECESITAN.
Contenido restringido
Comments are closed